Abstract

Platelet-rich plasma is an autologous blood preparation which is used in various medical specialties because of its regenerative properties. There is a wide variation in platelet-rich plasma preparation protocols and attaining the ideal platelet yield (>1 million platelets/μL) in a clinic setting can be challenging. We aimed at analyzing the centrifuge spin rates at which to attain an ideal platelet-rich plasma yield and also to study the effect of inclusion of the buffy coat after the first spin on the final platelet concentration in platelet-rich plasma. Seventy-five whole blood samples were obtained and divided into two groups - (1) leukocyte-rich platelet-rich plasma group and (2) leukocyte-poor platelet-rich plasma group. Samples in both groups were centrifuged using the dual spin method, at one of three centrifugation speed combinations (initial "soft" spin and second "hard" spin speeds, respectively): (1) 100 g/400 g, (2) 350 g/1350 g and (3) 900 g/1800 g. Platelet, red blood cell (RBC) and white blood cell (WBC) counts in both groups were compared. The 100 g/400 g spin gave a high platelet yield (increase of 395.4 ± 111.1%) in the leukocyte-poor-platelet-rich plasma group, while in the leukocyte-rich platelet-rich plasma group both 100 g/400 g and 350 g/1350 g spins resulted in significantly higher yields with an increase of 691.5 ± 316.3% and 738.6 ± 193.3%, respectively. The study was limited by a smaller sample size in the pure platelet-rich plasma (leukocyte-poor platelet-rich plasma) group. Ideal platelet yields can be achieved with both the 100 g/400 g as well as the 350 g/1350 g spins using the buffy coat inclusion method while the 100 g/400 g spin for "pure" platelet-rich plasma accomplishes a near-ideal platelet count with significantly reduced contamination with other cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call