Abstract

A bread wheat line (N11) and a disomic 2D(2R) substitution triticale line were crossed and backrossed four times. At each step electrophoretic selection for the seeds that possessed, simultaneously, the complete set of high molecular weight glutenin subunits of N11 and the two high molecular weight secalins of rye, present in the 2D(2R) line, was carried out. Molecular cytogenetic analyses of the BC4F8 generation revealed that the selection carried out produced a disomic addition line (2n = 44). The pair of additional chromosomes consisted of the long arm of chromosome 1R (1RL) from rye fused with the satellite body of the wheat chromosome 6B. Rheological analyses revealed that the dough obtained by the new addition line had higher quality characteristics when compared with the two parents. The role of the two additional high molecular weight secalins, present in the disomic addition line, in influencing improved dough characteristics is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.