Abstract
Continuous sign language recognition (CSLR) is a challenging task involving various signal processing techniques to infer the sequences of glosses performed by signers. Existing approaches in CSLR typically use multiple input modalities such as the raw video data and the extracted hand images to improve their recognition accuracy. However, the large modality differences make it difficult to define an integrative framework to effectively exchange and combine the knowledge obtained from different modalities such that they can complement each other for improving the framework's robustness against the gesture variations and background noises in CSLR. To address this issue, we propose a novel cross-attention deep learning framework named the CA-SignBERT. This framework utilizes multiple Bidirectional Encoder Representations from Transformers (BERT) models to analyze the information from different modalities. Among these BERT models, we introduce a special cross-attention mechanism to ensure an efficient inter-modality knowledge exchange. Besides, an innovative weight control module is proposed to dynamically hybridize their outputs. Experimental results reveal that the CA-SignBERT framework attains state-of-the-art performance in four benchmark CSLR datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.