Abstract

Energy harvesting from heat has been investigated for many decades and has found place in many areas such as space industry, aviation, automotive and industrial applications. Thermoelectric energy harvesting has a valuable potential to be used in mobile systems as well. In this study, the design, fabrication and test results of a low cost and low profile MEMS thermoelectric energy harvester composed of Cr and Ni thermocouples is introduced for mobile computing applications. Finite element modelling for performance optimization of the thermoelectric energy harvester, fabrication, and validation have been completed. When a temperature difference of 10 K is supplied across the TE harvester, 1.71 V Seebeck voltage and 1.1 μW electrical power can be generated within a 1cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> area and 600 μm z-dimension thickness limitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.