Abstract

The performance of various density functional approaches for the calculation of electron paramagnetic resonance (EPR) hyperfine coupling constants in transition metal complexes has been evaluated critically by comparison with experimental data and high-level coupled-cluster results for 21 systems, representing a large variety of different electronic situations. While both gradient-corrected and hybrid functionals allow the calculation of isotropic metal hyperfine coupling constants to within ca. 10−15% for the less critical cases (e.g., ScO, TiN, TiO, VO, MnO, MnF), none of the functionals investigated performs well for all complexes. Gradient-corrected functionals tend to underestimate the important core−shell spin polarization. While this may be improved by exact-exchange mixing in some cases, the accompanying spin contamination may even lead to a deterioration of the results for other complexes. We also identify cases, where essentially none of the functionals performs satisfactorily. In the absence of a ”universal functional”, the functionals to be applied to the calculation of hyperfine couplings in certain areas of transition metal chemistry have to be carefully selected. Desirable, improved functionals should provide sufficiently large spin polarization for core and valence shells without exaggerating it for the latter (and thus introducing spin contamination). Coupling anisotropies and coupling constants for ligand nuclei are also discussed. The computationally much more demanding coupled cluster (CCSD and CCSD(T)) methods, which have been applied to a subset of complexes, show good performance, even when a UHF reference wave function is moderately spin-contaminated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.