Abstract
The overlap hypothesis of mixture perception is based on the observation that mixtures of perceptually similar odorants tend to smell different from their components (configural), whereas mixtures of dissimilar odorants smell like their components (elemental). Because input patterns of perceptually similar odorants tend to overlap more than dissimilar ones, it has been hypothesized that component pattern overlap can predict a mixture's perceptual quality, with high overlap predicting a configural response and low overlap an elemental response. The authors used 7 pairs of odorants chosen for different degrees of overlap in their monomolecular 2-deoxyglucose activation patterns to test the theory in a go/no-go behavioral assay that measured generalization from binary mixtures to components. The authors show that individual component odorant input patterns are not sufficient to predict mixture quality, falsifying the overlap hypothesis. An important finding is that different odorant pairs with similar glomerular overlap showed opposite behavioral-perceptual responses, suggesting nonlinear effects at the receptor or glomerular level or the critical involvement of higher order areas. Thus, the authors posit that imaging the mixtures themselves may provide additional information needed to reliably predict mixture quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.