Abstract

Three-dimensional (3D) conductive scaffolds have attracted intensive interest recently for Li metal anode due to the capability of suppressing Li-dendrite growth. However, there is a lack of comprehensive understanding of its multiple roles including any side effects, which is critical for lithium metal anode technology. Here, we fabricate a type of Au-coated polyimide nanofabric as the scaffold for Li-metal anode and study the lithium plating/stripping behavior with different current densities. Different from reported studies which usually only discussed the benefits of 3D scaffolds, this study reveals unstabilized solid-electrolyte-interphase (SEI) with 3D architectures. It is found that 3D scaffold tends to form unstable SEI layer at high current density, which finally results in a short cell life due to continuous SEI accumulation and fast consuming of liquid electrolyte. To better understand this new finding, we propose an electrochemomechanical failure model for lithium metal anode, which will be instructive for designing advanced structures to electrochemomechanically stabilize Li-metal composite anode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.