Abstract
This study addressed the paradoxical observation that movement is essential for tactile exploration, and yet is accompanied by movement-related gating or suppression of tactile detection. Knowing that tactile gating covaries with the speed of movement (faster movements, more gating), we hypothesized that there would be no tactile gating at slower speeds of movement, corresponding to speeds commonly used during tactile exploration (<200mm/s). Subjects (n=21) detected the presence or absence of a weak electrical stimulus applied to the skin of the right middle finger during two conditions: rest and active elbow extension. Movement speed was systematically varied from 50 to ~1,000mm/s. No subject showed evidence of tactile gating at the slowest speed tested, 50mm/s (rest versus movement), but all subjects showed decreased detection at one or more higher speeds. For each subject, we calculated the critical speed, corresponding to the speed at which detection fell to 0.5 (chance). The mean critical speed was 472 mm/s and >200mm/s in almost all subjects (19/21). This result is consistent with our hypothesis that subjects optimize the speed of movement during tactile exploration to avoid speeds associated with tactile gating. This strategy thus maximizes the quality of the tactile feedback generated during tactile search and improves perception.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.