Abstract

ABSTRACTWhile glutamine is a nonessential amino acid that can be synthesized from glucose, some cancer cells primarily depend on glutamine for their growth, proliferation, and survival. Numerous types of cancer also depend on asparagine for cell proliferation. The underlying mechanisms of the glutamine and asparagine requirement in cancer cells in different contexts remain unclear. In this study, we show that the oncogenic virus Kaposi’s sarcoma-associated herpesvirus (KSHV) accelerates the glutamine metabolism of glucose-independent proliferation of cancer cells by upregulating the expression of numerous critical enzymes, including glutaminase 2 (GLS2), glutamate dehydrogenase 1 (GLUD1), and glutamic-oxaloacetic transaminase 2 (GOT2), to support cell proliferation. Surprisingly, cell crisis is rescued only completely by supplementation with asparagine but minimally by supplementation with α-ketoglutarate, aspartate, or glutamate upon glutamine deprivation, implying an essential role of γ-nitrogen in glutamine and asparagine for cell proliferation. Specifically, glutamine and asparagine provide the critical γ-nitrogen for purine and pyrimidine biosynthesis, as knockdown of four rate-limiting enzymes in the pathways, including carbamoylphosphate synthetase 2 (CAD), phosphoribosyl pyrophosphate amidotransferase (PPAT), and phosphoribosyl pyrophosphate synthetases 1 and 2 (PRPS1 and PRPS2, respectively), suppresses cell proliferation. These findings indicate that glutamine and asparagine are shunted to the biosynthesis of nucleotides and nonessential amino acids from the tricarboxylic acid (TCA) cycle to support the anabolic proliferation of KSHV-transformed cells. Our results illustrate a novel mechanism by which an oncogenic virus hijacks a metabolic pathway for cell proliferation and imply potential therapeutic applications in specific types of cancer that depend on this pathway.

Highlights

  • While glutamine is a nonessential amino acid that can be synthesized from glucose, some cancer cells primarily depend on glutamine for their growth, proliferation, and survival

  • We have previously shown that the oncogenic virus Kaposi’s sarcoma-associated herpesvirus (KSHV) suppresses aerobic glycolysis [24]

  • This reprogrammed metabolic program promotes the survival and cellular transformation of KSHV-infected cells, under conditions deprived of nutrients such as glucose, which could be in part due to the increased SIRT1 and AMP-activated protein kinase (AMPK) activities [26, 27]

Read more

Summary

Introduction

While glutamine is a nonessential amino acid that can be synthesized from glucose, some cancer cells primarily depend on glutamine for their growth, proliferation, and survival. Glutamine and asparagine provide the critical ␥-nitrogen for purine and pyrimidine biosynthesis, as knockdown of four rate-limiting enzymes in the pathways, including carbamoylphosphate synthetase 2 (CAD), phosphoribosyl pyrophosphate amidotransferase (PPAT), and phosphoribosyl pyrophosphate synthetases 1 and 2 (PRPS1 and PRPS2, respectively), suppresses cell proliferation. These findings indicate that glutamine and asparagine are shunted to the biosynthesis of nucleotides and nonessential amino acids from the tricarboxylic acid (TCA) cycle to support the anabolic proliferation of KSHV-transformed cells. Compounds targeting glutamine metabolism are being actively pursued for anticancer therapy [3, 6,7,8,9], and 18F-labeled glutamine tracers are used for cancer diagnosis and prognosis in preclinical and early clinical studies [10]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call