Abstract

The endocytosis of AMPA receptors (AMPARs) underlies several forms of synaptic plasticity including NMDA receptor (NMDAR)-dependent long-term depression (LTD) but the molecular mechanisms responsible for this trafficking remain unknown. Here we demonstrate that PSD-95, a major postsynaptic density protein, plays a key role in NMDAR-triggered endocytosis of synaptic AMPARs because of its binding to AKAP150, a scaffold for specific protein kinases and phosphatases. Knockdown of PSD-95 with shRNA blocks NMDAR-triggered, but not constitutive nor mGluR-triggered endocytosis of AMPARs. Deletion of PSD-95’s SH3 and GK domains as well as a point mutation (L460P), both of which inhibit binding of PSD-95 to AKAP150, also block NMDAR-triggered AMPAR endocytosis. Furthermore, expression of a mutant AKAP150 that does not bind calcineurin inhibits this NMDAR-triggered trafficking event. These results suggest that PSD-95’s interaction with AKAP150 is critical for NMDAR-triggered AMPAR endocytosis and LTD, possibly because these scaffolds position calcineurin in the appropriate subsynaptic domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.