Abstract
Recent evidence suggests that aggresome formation is a physiologic stress response not limited to misfolded proteins. That stress response, termed "physiologic aggresome," is exemplified by aggresome formation of inducible nitric oxide synthase (iNOS), an important host defense protein. CHIP (carboxy terminus of Hsp70-interacting protein) is a highly conserved protein that has been shown to mediate substrate ubiquitination and degradation by the proteasome. In this study, we show that CHIP has a previously unexpected critical role in the aggresome pathway. CHIP interacts with iNOS and promotes its ubiquitination and degradation by the proteasome as well as its sequestration to the aggresome. CHIP-mediated iNOS targeting to the proteasome sequentially precedes CHIP-mediated iNOS sequestration to the aggresome. CHIP is required for iNOS preaggresome structures to form a mature aggresome. Furthermore, CHIP is required for targeting the mutant form of cystic fibrosis transconductance regulator (CFTRDeltaF508) to the aggresome. Importantly, the ubiquitin ligase function of CHIP is required in targeting preaggresomal structures to the aggresome by promoting an iNOS interaction with histone deacetylase 6, which serves as an adaptor between ubiquitinated proteins and the dynein motor. This study reveals a critical role for CHIP in the aggresome pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.