Abstract

In this era of emerging pathogenic diseases, prompt and accurate detection of pathogens is crucial. Disease diagnosis, environmental monitoring and food safety all rely heavily on the identification of pathogens. Peptide-based electrochemical sensors due to their rapid response times, specificity and sensitivity have emerged as promising tools in the identification of pathogens. This review emphasizes the importance of peptides in detection of pathogens and different peptide-based electrochemical biosensors for the detection of pathogens. Peptides offer several advantages including strong binding affinity to a diverse array of pathogens including bacteria, viruses and fungi, tunable specificity and simple synthesis. Peptide-based electrochemical sensors employ different electrochemical techniques such as differential pulse voltammetry (DPV), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), amperometry and linear sweep voltammetry (LSV). The efficacy of peptide-based biosensors in detecting low concentrations of pathogens is highlighted, demonstrating the promising applications of these biosensors in early diagnosis and real-time monitoring. In addition, the review also addresses the current challenges in the field such as peptide stability, sensor reproducibility and interference from complex biological matrices. This review suggests potential resolutions and avenues for progress such as the development of multiplexed detection systems that can concurrently identify multiple pathogens and developments in peptide design and sensor miniaturization. In summary, this review highlights the substantial advancements and potential possibilities of peptide-based electrochemical biosensors in the realm of pathogen detection, thereby facilitating the development of safer and more effective diagnostic tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.