Abstract

Fused Deposition Modeling (FDM) is a widely used additive manufacturing technology for fabrication of complex geometric parts using thermoplastic polymers. The quality issues and inferior properties of fabricated parts limited this process to manufacture parts for industrial level applications. Reinforcing the polymer with nanoparticles, short fibers or continuous fibers improve mechanical, thermal and electrical properties compared to the neat polymer. Several works have been carried out since last two decades to print quality products through FDM by using composite materials. The success of expanding this technique to industrial applications depends on the preparation of printable composite feedstock filament and printing without defects. This article reviews the challenges involved in the preparation of composite feedstock filaments and printing issues during the printing of nano composites, short and continuous fiber composites. The printing process of various thermoplastic composites ranging from amorphous to crystalline polymers is discussed. Also, detailed explanation is given about the analytical and numerical models used for simulating the FDM printing process and for estimating the mechanical properties of the printed parts. This critical review mainly helps the young researchers working in the area of processing of composite materials via 3D printing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.