Abstract

The possibility of combined adsorption-degradation processes in wastewater treatment using nanomaterials based on indium sulfide (In2S3) is examined in this review paper. Regarding the synergistic adsorption and degradation of pollutants, In2S3 performs exceptionally well, making it a suitable choice for wastewater remediation. Insights have been given to the pollutant removal mechanism through this integrated technique. The synergistic removal process is affected by several operational factors, including pH, catalyst dose, pollutant concentration, and contact duration. This analysis highlights the significance of optimizing these parameters for optimal contaminant removal efficiency. The influence of co-existing species, including cations, anions, and organic compounds, on the integrated elimination process is further highlighted by a discussion of their role. Future research directions are suggested, including a better comprehension of underlying processes, investigation of hybrid nanocomposites, and evaluation of long-term stability and recyclability to enhance the applicability of In2S3-based nanomaterials. This study aids in the creation of effective and long-lasting wastewater treatment methods by using the potential of In2S3-based nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.