Abstract

Electric vehicles (EVs) have had a meteoric rise in acceptance in recent decades due to mounting worries about greenhouse gas emissions, global warming, and the depletion of fossil resource supplies because of their superior efficiency and performance. EVs have now gained widespread acceptance in the automobile industry as the most viable alternative for decreasing CO2 production. The battery is an integral ingredient of electric vehicles, and the battery management system (BMS) acts as a bridge between them. The goal of this work is to give a brief review of certain key BMS technologies, including state estimation, aging characterization methodologies, and the aging process. The consequences of battery aging limit its capacity and arise whether the battery is used or not, which is a significant downside in real-world operation. That is why this paper presents a wide range of recent research on Li-ion battery aging processes, including estimations from multiple areas. Afterward, various battery state indicators are thoroughly explained. This work will assist in defining new relevant domains and constructing commercial models and play a critical role in future research in this expanding area by providing a clear picture of the present status of estimating techniques of the major state indicators of Li-ion batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call