Abstract
The Johnson-Mehl-Avrami-Kolmogorov (JMAK) formalization, often referred to as the Avrami equation, was originally developed to describe the progress of phase transformations in material systems. Many other transformations in the life, physical and social sciences follow a similar pattern of nucleation and growth. The Avrami equation has been applied widely to modelling such phenomena, including COVID-19, regardless of whether they have a formal thermodynamic basis. We present here an analytical overview of such applications of the Avrami equation outside its conventional use, emphasizing examples from the life sciences. We discuss the similarities that at least partially justify the extended application of the model to such cases. We point out the limitations of such adoption; some are inherent to the model itself, and some are associated with the extended contexts. We also propose a reasoned justification for why the model performs well in many of these non-thermodynamic applications, even when some of its fundamental assumptions are not satisfied. In particular, we explore connections between the relatively accessible verbal and mathematical language of everyday nucleation- and growth-based phase transformations, represented by the Avrami equation, and the more challenging language of the classic SIR (susceptible-infected-removed) model in epidemiology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.