Abstract

The pace of development of new animal models of Parkinson's disease (PD) has increased dramatically in the recent past, primarily because of the identification of the protein, α-synuclein, in Lewy bodies in both idiopathic and familial PD. This discovery has allowed the production of transgenic models that incorporate a form of human, mutant α-synuclein from rare familial cases, and has enabled the search for Lewy-body-like aggregations of this protein in toxin-induced models. Indeed, α-synuclein-positive inclusions, some of which bear strong resemblance to Lewy bodies, have now been recognized and their formation investigated in several different, environmentally-induced and transgenic models. Nevertheless, these data have yet to provide a uniform theory of inclusion pathogenesis for PD. The aim of this review is not only to summarize the findings to date on α-synuclein-immunopositive inclusion bodies, including some new information on Lewy bodies, but also provide a concise viewpoint on their origin and formation in animal models. We will provide evidence for a predicted series of intracellular events that underlie inclusion formation. Triggered by oxidative and metabolic stress, chronic, toxin-treated animals, rather than transgenic models transfected with human α-synuclein, eventually produce inclusion bodies that most closely resemble early stages of Lewy bodies. Elucidating the common mechanisms in animal models is a first step towards understanding the role of Lewy bodies and their formation in Parkinson's disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.