Abstract

AbstractOrientation microscopy (OM) refers to techniques for reconstruction of microstructures based on the spatially resolved measurement of individual crystallographic phases and orientations. This review gives an overview on different techniques of OM in the scanning and transmission electron mi‐croscope. All rely on the automated evaluation of electron diffraction patterns. The most popular technique is based on electron backscatter diffraction (EBSD) in the SEM. In the TEM several techniques are available which are based on either Kikuchi diffraction patterns, spot diffraction patterns with and without electron precession, or reconstructed spot diffraction patterns. Each technique is introduced in detail. Subsequently the techniques are critically compared with respect to their spatial and angular resolution, their robustness in terms of orientation determination and questions of practical applicability for materials science. One point discussed in detail is the spatial resolution. It is shown that the spatial resolution, i.e. the volume from which the diffraction information is generated, is not very different for the SEM and TEM techniques. For this and other reasons we argue that the EBSD technique is in many cases the best suited method for OM. In those cases where it is not (e.g. investigations on truly nanocrystal‐line materials, beam sensitive samples) it is the spot diffraction method combined with electron precession and template matching for orientation determination which offers the best resolution and robustness. The Kikuchi pattern technique in the TEM is only reasonably used when highest angular resolution is to be achieved, e.g. for lattice constant determination. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call