Abstract

There is a growing demand for high-performance infrared (IR) materials with longer wavelength optical transmission, higher mechanical strength, and increased thermal stability. Although crystalline materials, namely transparent ceramics, have shown suitable optical properties, they are difficult and expensive to produce, making glasses more attractive for many applications. Several reviews have been published discussing chalcogenide and halide glasses, but none cover relevant oxide glass families in an overarching review. This article provides a discussion of relevant oxide glass systems involved in IR transmission as well as their primary applications. Glass compositional systems reviewed include silicates, tellurites, germanates, and vanadates. Emphasis on structure-property relationships, processing methods, and transparency limits for each composition is included. The applications of these materials include optical communications, thermal imaging, optical switching, and optical modulation. Finally, current material challenges are discussed with perspectives and outlooks on the future of IR transparent oxide glasses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call