Abstract

The accurate prediction of two-phase gas and liquid flow regimes is important in the proper design, operation and scale-up of pressure management and fluid handling systems in a wide range of industrial processes. This paper provides a comprehensive review of 3947 published experimental data points for gas-liquid flow maps in vertical pipes and annuli, including a critical analysis of state-of-the-art measurement techniques used to identify bubble, slug, churn and annular flow regimes. We examine the critical factors of pipe geometry (diameters, deviation from vertical), fluid properties and flow conditions that affect the transition from one flow regime to another. The review surveys the theoretical models available to predict flow regime transitions, and we validate the accuracy of these models using the published experimental data. The most reliable flow regime transition models for upward co-current flows are analytically shown to be: (i) Barnea 1987 for dispersed bubble to bubble flow, (ii) Taitel et al. 1980 for bubble to slug flow, (iii) Barnea 1987 for slug to churn flow, and (iv) Mishima and Ishii 1984 for churn to annular flow regime transition.Moreover, based on the review we provide an outlook on the research needs and important developments in prediction of two-phase flow in vertical pipes including the use of computational fluid dynamics (CFD) techniques to simulate gas-liquid flows in vertical geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.