Abstract

Effective cooling is critical for safe and efficient operation of proton exchange membrane fuel cell (PEMFC) stacks with high power. The narrow range of operating temperature and the small temperature differences between the stack and the ambient introduce significant challenges in the design of a cooling system. To promote the development of effective cooling strategies, cooling techniques reported in technical research publications and patents are reviewed in this paper. Firstly, the characteristics of the heat generation and cooling requirements in a PEMFC stack are introduced. Then the advantages, challenges and progress of various cooling techniques, including (i) cooling with heat spreaders (using high thermal conductivity materials or heat pipes), (ii) cooling with separate air flow, (iii) cooling with liquid (water or antifreeze coolant), and (iv) cooling with phase change (evaporative cooling and cooling through boiling), are systematically reviewed. Finally, further research needs in this area are identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call