Abstract

The principles of gas-phase biofilter systems, modeling, and operations are quite different from liquid-phase biofilter systems. Because of "biofilter" terminology used in both gas and liquid-phase systems, researchers often mistakenly use gas-phase models in liquid-phase applications for the analysis of data and determining kinetic parameters. For example, recent studies show a well-known gas-phase biofilter model, known as Ottengraf-Van Den Oever zero-order diffusion-limited model, is applied for analysis of experimental data from an aqueous biofilter system which is used for the removal of toxic divalent copper [Cu(II)] and chromium (VI). The objective of this research is to present the limitations and principles of gas-phase biofilter models and to highlight the incorrect use of gas-phase biofilter models in liquid-phase systems that can lead to erroneous results. The outcome of this work will facilitate scientists and engineers in distinguishing two different systems and selecting a more suitable biofilter model for the analysis of experimental data in determining kinetic parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.