Abstract

In probabilistic composite mechanics, uncertainty modelling may be introduced at a constituent (micro-scale), ply (meso-scale) or component (macro-scale) level. Each of these approaches has particular advantages/limitations and appropriate fusing and benchmarking is desirable in order to improve confidence in probabilistic performance estimates of composite structures. In the present study, random variable based micro and macro-scale reliability analyses are critically compared through a limit state formulation based on the analytical stress tensor components of a rectangular simply supported orthotropic FRP composite plate and the Tsai–Hill failure criterion. The study aims to promote cross-fertilisation of alternative uncertainty modelling approaches in a multi-scale analysis framework. Propagation of uncertainty from micro to macro-scale, and the corresponding influence of changes in random variability on the reliability estimates is quantified. The importance of benchmarking experimentally-based probability distributions of mechanical properties through micro-scale modelling is illustrated, and the confidence that can be placed on reliability estimates is quantified through a series of numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.