Abstract
The biclique partition number of a graph G=(V,E), denoted bp(G), is the minimum number of pairwise edge disjoint complete bipartite subgraphs of G so that each edge of G belongs to exactly one of them. It is easy to see that bp(G)≤n−α(G), where α(G) is the maximum size of an independent set of G. Erdős conjectured in the 80's that for almost every graph G equality holds; i.e., if G=Gn,1/2 then bp(G)=n−α(G) with high probability. Alon showed that this is false. We show that the conjecture of Erdős is true if we instead take G=Gn,p, where p is constant and less than a certain threshold value p0≈0.312. This verifies a conjecture of Chung and Peng for these values of p. We also show that if p0<p<1/2 then bp(Gn,p)=n−(1+Θ(1))α(Gn,p) with high probability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.