Abstract
The localization of a critical point of minimum type of a smooth functional is obtained in a bounded convex conical set defined by a norm and a concave upper semicontinuous functional. A vector version is also given in order to localize componentwise solutions of variational systems. The technique is then used for the localization and multiplicity of Nash-type positive equilibria of nonvariational systems. Applications are given to periodic problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.