Abstract

Non-first order (FO) kinetics models are of three types; second order (SO), general order (GO) and mixed order (MO). It is shown that all three of these have constraints in their energy level schemes and their applicable parameter values. In nature such restrictions are not expected to exist. The thermoluminescence (TL) glow peaks produced by these models shift their position and change their shape as the trap occupancies change. Such characteristics are very unlike those found in samples of real materials. In these models, in general, retrapping predominates over recombination. It is shown that the quasi-equilibrium (QE) assumption implied in the derivation of the TL equation of these models is quite valid, thus disproving earlier workers' conclusion that QE cannot be held under retrapping dominant conditions. However notwithstanding their validity, they suffer from the shortcomings as stated above and have certain lacunae. For example, the kinetic order (KO) parameter and the pre-exponential factor which are assumed to be the constant parameters of the GO kinetics expression turn out to be variables when this expression is applied to plausible physical models. Further, in glow peak characterization using the GO expression, the quality of fit is found to deteriorate when the best fitted value of KO parameter is different from 1 and 2. This means that the found value of the basic parameter, namely the activation energy, becomes subject to error. In the MO kinetics model, the value of the KO parameter α would change with dose, and thus in this model also, as in the GO model, no single value of KO can be assigned to a given glow peak. The paper discusses TL of real materials having characteristics typically like those of FO kinetics. Theoretically too, a plausible physical model of TL emission produces glow peaks which have characteristics of FO kinetics under a wide variety of parametric combinations. In the background of the above findings, it is suggested that the kinetics analysis of the TL glow curves should be carried out straightforwardly assuming FO kinetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call