Abstract

The transition from single-cell to multicellular behavior is important in early development but rarely studied. The starvation-induced aggregation of the social amoeba Dictyostelium discoideum into a multicellular slug is known to result from single-cell chemotaxis towards emitted pulses of cyclic adenosine monophosphate (cAMP). However, how exactly do transient, short-range chemical gradients lead to coherent collective movement at a macroscopic scale? Here, we developed a multiscale model verified by quantitative microscopy to describe behaviors ranging widely from chemotaxis and excitability of individual cells to aggregation of thousands of cells. To better understand the mechanism of long-range cell—cell communication and hence aggregation, we analyzed cell—cell correlations, showing evidence of self-organization at the onset of aggregation (as opposed to following a leader cell). Surprisingly, cell collectives, despite their finite size, show features of criticality known from phase transitions in physical systems. By comparing wild-type and mutant cells with impaired aggregation, we found the longest cell—cell communication distance in wild-type cells, suggesting that criticality provides an adaptive advantage and optimally sized aggregates for the dispersal of spores.

Highlights

  • Many living systems exhibit collective behavior, leading to beautiful patterns found in nature

  • How do cells communicate over macroscopic distances much larger than the typical cell—cell distance to decide how they should behave? Here, we developed a multiscale model of social amoeba, spanning behavior from individuals to thousands of cells

  • The first and second variables are a local activator and a global inhibitor

Read more

Summary

Introduction

Many living systems exhibit collective behavior, leading to beautiful patterns found in nature. There are two main strategies to achieve synchrony (or long-range order) among individuals: A leader (i.e., a special cell or an external chemical field) may influence the behavior of the others in a hierarchical fashion (top-down). In top-down ordering, fluctuations are independent as cells follow the leader or the external field, and they are not influenced by their neighbors. Fluctuations are correlated as neighboring cells influence each other [9]. Note that in this context, it is a reasonable assumption that cells can follow fluctuations of their neighbors much more than fluctuations of a distant leader cell. At a critical value of the cell—cell coupling strength, correlations may establish among cells that span the whole cell collective independent of its size, leading to a maximally connected collective similar to neurons in the brain [10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call