Abstract
Due to competition between online retailers, the need for providing improved customer service has grown rapidly. In addition to reduction in sales due to loss of customers, more investments are needed to be done to attract new customers. Companies now are working continuously to improve their perceived quality by way of giving timely and quality service to their customers. Customer churn has become one of the primary challenges that many firms are facing nowadays. Several churn prediction models and techniques are proposed previously in literature to predict customer churn in areas such as finance, telecom, banking etc. Researchers are also working on customer churn prediction in e-commerce using data mining and machine learning techniques. In this paper, a comprehensive review of various models to predict customer churn in e-commerce data mining and machine learning techniques has been presented. A critical review of recent research papers in the field of customer churn prediction in e-commerce using data mining has been done. Thereafter, important inferences and research gaps after studying the literature are presented. Finally, the research significance and concluding remarks are described in the end.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering and Advanced Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.