Abstract

Two shape-sensing algorithms, the calibration matrix (CM) method and the inverse Finite Element Method (iFEM), were compared on their ability to accurately reconstruct displacements, strains, and loads and on their computational efficiency. CM reconstructs deformation through a linear combination of known load cases using the sensor data measured for each of these known load cases and the sensor data measured for the actual load case. iFEM reconstructs deformation by minimizing a least-squares error functional based on the difference between the measured and numerical values for displacement and/or strain. In this study, CM is covered in detail to determine the applicability and practicality of the method. The CM results for several benchmark problems from the literature were compared to the iFEM results. In addition, a representative aerospace structure consisting of a twisted and tapered blade with a NACA 6412 cross-sectional profile was evaluated using quadratic hexahedral solid elements with reduced integration. Both methods assumed linear elastic material conditions and used discrete displacement sensors, strain sensors, or a combination of both to reconstruct the full displacement and strain fields. In our study, surface-mounted and distributed sensors throughout the volume of the structure were considered. This comparative study was performed to support the growing demand for load monitoring, specifically for applications where the sensor data is obtained from discrete and irregularly distributed points on the structure. In this study, the CM method was shown to achieve greater accuracy than iFEM. Averaged over all the load cases examined, the CM algorithm achieved average displacement and strain errors of less than 0.01%, whereas the iFEM algorithm had an average displacement error of 21% and an average strain error of 99%. In addition, CM also achieved equal or better computational efficiency than iFEM after initial set-up, with similar first solution times and faster repeat solution times by a factor of approximately 100, for hundreds to thousands of sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.