Abstract

In recent years, differential equation-driven methods have emerged as an alternate approach for structural topology optimization. In such methods, the design is evolved using special differential equations. Implicit level-set methods are one such set of approaches in which the design domain is represented in terms of implicit functions and generally (but not necessarily) use the Hamilton-Jacobi equation as the evolution equation. Another set of approaches are referred to as phase-field methods; which generally use a reaction-diffusion equation, such as the Allen-Cahn equation, for topology evolution. In this work, we exhaustively analyze four level-set methods and one phase-field method, which are representative of the literature. In order to evaluate performance, all the methods are implemented in MATLAB and studied using two-dimensional compliance minimization problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.