Abstract
Double-stranded DNA packaging in bacteriophages is driven by one of the most powerful force-generating molecular motors reported to date. The phage T4 motor is composed of the small terminase protein, gpl6 (18kDa), the large terminase protein, gp17 (70kDa), and the dodecameric portal protein gp20 (61kDa). gp16, which exists as an oligomer in solution, is involved in the recognition of the viral DNA substrate, the very first step in the DNA packaging pathway, and stimulates the ATPase and packaging activities associated with gp17. Sequence analyses using COILS2 revealed the presence of coiled coil motifs (CCMs) in gp16. Sixteen T4-family and numerous phage small terminases show CCMs in the corresponding region of the protein, suggesting a common structural and functional theme. Biochemical properties such as reversible thermal denaturation and analytical gel filtration data suggest that the central CCM-1 is critical for oligomerization of gp16. Mutations in CCM-1 that change the hydrophobicity of key residues, or pH 6.0, destabilized coiled coil interactions, resulting in a loss of gp16 oligomerization. The gp16 oligomers are in a dynamic equilibrium with lower M(r) intermediate species and monomer. Monomeric gp16 is unable to stimulate gp17-ATPase, an activity essential for DNA packaging, while conversion back into oligomeric form restored the activity. These data for the first time defined a CCM that is critical for structure and function of the small terminase. We postulate a packaging model in which the gp16 CCM is implicated in the regulation of packaging initiation and assembly of a supramolecular DNA packaging machine on the viral concatemer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.