Abstract

Predicting student attrition is an intriguing yet challenging problem for any academic institution. Class-imbalanced data is a common in the field of student retention, mainly because a lot of students register but fewer students drop out. Classification techniques for imbalanced dataset can yield deceivingly high prediction accuracy where the overall predictive accuracy is usually driven by the majority class at the expense of having very poor performance on the crucial minority class. In this study, we compared different data balancing techniques to improve the predictive accuracy in minority class while maintaining satisfactory overall classification performance. Specifically, we tested three balancing techniques—over-sampling, under-sampling and synthetic minority over-sampling (SMOTE)—along with four popular classification methods—logistic regression, decision trees, neuron networks and support vector machines. We used a large and feature rich institutional student data (between the years 2005 and 2011) to assess the efficacy of both balancing techniques as well as prediction methods. The results indicated that the support vector machine combined with SMOTE data-balancing technique achieved the best classification performance with a 90.24% overall accuracy on the 10-fold holdout sample. All three data-balancing techniques improved the prediction accuracy for the minority class. Applying sensitivity analyses on developed models, we also identified the most important variables for accurate prediction of student attrition. Application of these models has the potential to accurately predict at-risk students and help reduce student dropout rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.