Abstract

Grand Canonical Monte Carlo simulation (GCMC) is used to study the capillary condensation and evaporation of argon adsorption in finite-length carbon cylindrical nanopores. From the simulation results of local density distributions in the radial and axial directions we obtain the contact angle and the core radii just before condensation and just after evaporation. These are then used in the Kelvin equation (evaporation) and Cohan equation (condensation) to obtain the product of surface tension and liquid molar volume. This product is found to be always greater than for the bulk liquid. We test this deviation with pores of different length and radius and find that both affect the derived product of surface tension and liquid molar volume. The implication of this finding is that if the values of surface tension and liquid molar volume of the bulk phase are used in the Kelvin equation the pore radius will be underestimated. For argon adsorption in cylindrical pores we propose that the Kelvin and Cohan equations should be modified to take account of the difference between the fluid in the adsorbed phase in the confined space and that in the bulk phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.