Abstract

AbstractThe equivalent diffuse double layer (DDL) thickness in clay-electrolyte systems is a very useful parameter for analyzing the engineering behavior of clays under different environmental conditions. The equivalent DDL thickness is generally assumed to be equal to the characteristic (Debye) length. The present work examined critically the applicability of characteristic length to define equivalent DDL thickness under various clay-surface and pore-fluid conditions. A critical analysis is presented of the changes in the equivalent DDL thickness and characteristic length under the influence of different clay-surface and electrolyte properties. The equivalent DDL thickness was found to be smaller than the characteristic length for a wide range of surface and pore-fluid parameters normally encountered in engineering practice. An accurate and simple power relationship was developed to predict the equivalent DDL thickness from the characteristic length, which is applicable to a wide range of clay-electrolyte systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.