Abstract

The behavior of the proton magnetic form factor is studied within the modified hard scattering picture, which takes into account gluonic radiative corrections in terms of transverse separations. We parallel the analysis given previously by Li and make apparent a number of serious objections. The appropriate cut-off needed to render the form-factor calculation finite is both detailed and analyzed by considering different cut-off prescriptions. The use of the maximum interquark separation as a common infrared cut-off in the Sudakov suppression factor is proposed, since it avoids difficulties with the $\alpha _{s}$-singularities and yields a proton form factor insensitive to the inclusion of the soft region which therefore can be confidently attributed to perturbative QCD. Results are presented for a variety of proton wave functions including also their intrinsic transverse momentum. It turns out that the perturbative contribution, although theoretically self-consistent for $Q^{2}$ larger than about $6$~GeV${}^{2}$ to $10$~GeV${}^{2}$, is too small compared to the data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.