Abstract
The recursive model index (RMI) has recently been introduced as a machine-learned replacement for traditional indexes over sorted data, achieving remarkably fast lookups. Follow-up work focused on explaining RMI's performance and automatically configuring RMIs through enumeration. Unfortunately, configuring RMIs involves setting several hyperparameters, the enumeration of which is often too time-consuming in practice. Therefore, in this work, we conduct the first inventor-independent broad analysis of RMIs with the goal of understanding the impact of each hyperparameter on performance. In particular, we show that in addition to model types and layer size, error bounds and search algorithms must be considered to achieve the best possible performance. Based on our findings, we develop a simple-to-follow guideline for configuring RMIs. We evaluate our guideline by comparing the resulting RMIs with a number of state-of-the-art indexes, both learned and traditional. We show that our simple guideline is sufficient to achieve competitive performance with other learned indexes and RMIs whose configuration was determined using an expensive enumeration procedure. In addition, while carefully reimplementing RMIs, we are able to improve the build time by 2.5x to 6.3x.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.