Abstract

Nanotechnology is one of the most relevant scientific areas today due to its multiple applications in fields such as medicine, environmental remediation, information technology and energy conversion. This importance has led to the need to advance in the development of environmentally sustainable and safe nanomaterials by incorporating the principles of green chemistry during their synthesis and in their applications. However, this qualitative framework of thought does not offer minimum criteria for the use of the term “green”, and therefore, this adjective is commonly used to refer to bio-based or nanotechnological processes without taking into account their net ecological impact. In this context, environmental sustainability metrics can be applied to nanotechnology to compare, optimize and quantify the environmental sustainability of synthesis procedures. This review provides an overview of green chemistry and its application in nanotechnology, but also an analysis of the use of green chemistry principles in the development of bio-based nanobiotechnology and nanosynthesis, with special emphasis on the use of sustainability's metrics for the quantitative analysis of nanomaterial synthesis protocols. These include: Atom Economy, E-factor, Process Mass Intensity, Energy Intensity, and Life Cycle Analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.