Abstract
ABSTRACTIn this paper, we consider the Cauchy problem for multidimensional elliptic equations in a cylindrical domain. The method of spectral expansion in eigenfunctions of the Cauchy problem for equations with deviating argument establishes a criterion of the strong solvability of the considered elliptic Cauchy problem. It is shown that the ill-posedness of the elliptic Cauchy problem is equivalent to the existence of an isolated point of the continuous spectrum for a self-adjoint operator with deviating argument.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.