Abstract

We give a necessary and sufficient condition for the integrality of the Taylor coefficients at the origin of formal power series qi(z)=ziexp(Gi(z)/F(z)), with z=(z1,…,zd) and where F(z) and Gi(z)+log(zi)F(z), i=1,…,d are particular solutions of certain A-systems of differential equations. This criterion is based on the analytical properties of Landau’s function (which is classically associated with sequences of factorial ratios) and it generalizes the criterion in the case of one variable presented in [E. Delaygue, Critère pour l’intégralité des coefficients de Taylor des applications miroir, J. Reine Angew. Math. 662 (2012) 205–252]. One of the techniques used to prove this criterion is a generalization of a version of a theorem of Dwork on formal congruences between formal series, proved by Krattenthaler and Rivoal in [C. Krattenthaler, T. Rivoal, Multivariate p-adic formal congruences and integrality of Taylor coefficients of mirror maps, in: L. Di Vizio, T. Rivoal (Eds.), Théories Galoisiennes et Arithmétiques des Équations Différentielles, in: Séminaire et Congrés, vol. 27, Soc. Math. France, Paris, 2011, pp. 279–307].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.