Abstract
In most of the existing space-time code designs, achieving full diversity is based on maximum-likelihood (ML) decoding at the receiver that is usually computationally expensive and may not have soft outputs. Recently, Zhang-Liu-Wong introduced Toeplitz codes and showed that Toeplitz codes achieve full diversity when a linear receiver, zero-forcing (ZF) or minimum mean square error (MMSE) receiver, is used. Motivated from Zhang-Liu-Wong's results on Toeplitz codes, in this paper, we propose a design criterion for space-time block codes (STBC), in which information symbols and their complex conjugates are linearly embedded, to achieve full diversity when ZF or MMSE receiver is used. Subsequently, we propose a novel family of STBC that satisfy the criterion and thus achieve full diversity with ZF or MMSE receiver. Our newly proposed STBC are constructed by overlapping the 2times2 Alamouti code and hence named overlapped Alamouti codes in this paper. The new codes are close to orthogonal while their symbol rates can approach 1 for any number of transmit antennas. Simulation results show that overlapped Alamouti codes significantly outperform Toeplitz codes for all numbers of transmit antennas and also outperform orthogonal STBC (OSTBC) when the number of transmit antennas is above 4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.