Abstract

The lack of preparedness for detecting and responding to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogen (i.e., COVID-19) has caused enormous harm to public health and the economy. Testing strategies deployed on a population scale at day zero, i.e., the time of the first reported case, would be of significant value. Next-generation sequencing (NGS) has such capabilities; however, it has limited detection sensitivity for low-copy-number pathogens. Here, we leverage the CRISPR-Cas9 system to effectively remove abundant sequences not contributing to pathogen detection and show that NGS detection sensitivity of SARS-CoV-2 approaches that of RT-qPCR. The resulting sequence data can also be used for variant strain typing, co-infection detection, and individual human host response assessment, all in a single molecular and analysis workflow. This NGS work flow is pathogen agnostic and, therefore, has the potential to transform how large-scale pandemic response and focused clinical infectious disease testing are pursued in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.