Abstract

The number of fully sequenced fungal genomes is rapidly increasing. Since genetic tools are poorly developed for most filamentous fungi, it is currently difficult to employ genetic engineering for understanding the biology of these fungi and to fully exploit them industrially. For that reason there is a demand for developing versatile methods that can be used to genetically manipulate non-model filamentous fungi. To facilitate this, we have developed a CRISPR-Cas9 based system adapted for use in filamentous fungi. The system is simple and versatile, as RNA guided mutagenesis can be achieved by transforming a target fungus with a single plasmid. The system currently contains four CRISPR-Cas9 vectors, which are equipped with commonly used fungal markers allowing for selection in a broad range of fungi. Moreover, we have developed a script that allows identification of protospacers that target gene homologs in multiple species to facilitate introduction of common mutations in different filamentous fungi. With these tools we have performed RNA-guided mutagenesis in six species of which one has not previously been genetically engineered. Moreover, for a wild-type Aspergillus aculeatus strain, we have used our CRISPR Cas9 system to generate a strain that contains an AACU_pyrG marker and demonstrated that the resulting strain can be used for iterative gene targeting.

Highlights

  • Filamentous fungi are ubiquitous organisms that impact human life in both positive and negative manners

  • RNA guided DNA DSBs generated by Cas9 may be repaired in an error-prone manner by non-homologous endjoining (NHEJ) and directly lead to mutation; or alternatively, if a gene-targeting substrate is co-transformed into the strain together with the CRISPR-Cas9 vector, the DSBs may serve to increase the gene targeting efficiency at their site (See Fig 1C)

  • The resulting synthetic gene was fused to the strong constitutive A. nidulans tef1 promoter and to the tef1 terminator[24,25]

Read more

Summary

Introduction

Filamentous fungi are ubiquitous organisms that impact human life in both positive and negative manners. Since Cas was codon optimized for A. niger, and since we have in-house experience in transforming this species, we decided to test the potential of the albA-sgRNA-Cas complex for its ability to induce mutagenesis in the five species, A. brasiliensis (ABRA), A. carbonarius (ACAR), A. luchuensis (ALUC), A. niger (ANIG) and A. tubingensis (ATUB), which all belong to section Nigri. Amongst these fungi, A. brasiliensis has to our knowledge not previously been genetically engineered. Perhaps a small three nucleotide ATA repeat present at the borders of the deletion promotes this type of event

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.