Abstract

Abstract Regulation of totipotency and naïve pluripotency is crucial for early human embryo development. However, the mechanisms of naïve pluripotency and totipotency regulation in humans, especially the signaling pathways involved in these processes, remain largely unknown. Here, using the conversion of human extended pluripotent stem cells (hEPSCs) to naïve pluripotent stem cells as a model, we performed a CRISPR/Cas9-based kinome knockout screen to analyze the effect of disrupting 763 kinases in regulating human naïve pluripotency. Further validation using small molecules revealed that the inhibition of ErbB family kinases promoted the transition of hEPSCs to human naïve pluripotent stem cells. More importantly, chemical inhibition of the ErbB family also promoted induction of totipotent signatures in human pluripotent cells under different culture conditions. Our findings provide new mechanistic insights into the regulation of naïve pluripotency and totipotency in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call