Abstract

The aggressive nature of certain cancers and their adverse effects on patient outcomes have been linked to cancer innervation, where neurons infiltrate and differentiate within the cancer stroma. Recently we demonstrated how cancer plasticity and TGFβ signaling could promote breast cancer innervation that is associated with increased cancer aggressivity. Despite the promising potential of cancer innervation as a target for anti-cancer therapies, there is currently a significant lack of effective methods to study cancer-induced neuronal differentiation, hindering the development of high-throughput approaches for identifying new targets or pharmacological inhibitors against cancer innervation. To overcome this challenge, we used CRISPR-based endogenous labeling of the neuronal marker β3-tubulin in neuronal precursors to investigate cancer-induced neuronal differentiation in nerve-cancer cocultures and provide a tool that allows for better standardization and reproducibility of studies about cancer-induced innervation. Our approach demonstrated that β3-tubulin gene editing did not affect neuronal behavior and enabled accurate reporting of cancer-induced neuronal differentiation dynamics in high-throughput settings, which makes this approach suitable for screening large cohorts of cells or testing various biological contexts. In a more context-based approach, by combining this method with a cell model of breast cancer epithelial-mesenchymal transition, we revealed the role of cancer cell plasticity in promoting neuronal differentiation, suggesting that cancer innervation represents an underexplored path for epithelial-mesenchymal transition-mediated cancer aggressivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.