Abstract

The concept of cross-sensor modulation, wherein one sensor modality can influence another's response, is often overlooked in traditional sensor fusion architectures, leading to missed opportunities for enhancing data accuracy and robustness. In contrast, biological systems, such as aquatic animals like crayfish, demonstrate superior sensor fusion through multisensory integration. These organisms adeptly integrate visual, tactile, and chemical cues to perform tasks such as evading predators and locating prey. Drawing inspiration from this, we propose a neuromorphic platform that integrates graphene-based chemitransistors, monolayer molybdenum disulfide (MoS2) based photosensitive memtransistors, and triboelectric tactile sensors to achieve "Super-Additive" responses to weak chemical, visual, and tactile cues and demonstrate contextual response modulation, also referred to as the "Inverse Effectiveness Effect." We hold the view that integrating bio-inspired sensor fusion principles across various modalities holds promise for a wide range of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call