Abstract
This paper presents a Crank–Nicolson leap-frog (CNLF) scheme for the unsteady incompressible magnetohydrodynamics (MHD) equations. The spatial discretization adopts the Galerkin finite element method (FEM), and the temporal discretization employs the CNLF method for linear terms and the semi-implicit method for nonlinear terms. The first step uses Stokes style’s scheme, the second step employs the Crank–Nicolson extrapolation scheme, and others apply the CNLF scheme. We establish that the fully discrete scheme is stable and convergent when the time step is less than or equal to a positive constant. Firstly, we show the stability of the scheme by means of the mathematical induction method. Next, we focus on analyzing error estimates of the CNLF method, where the convergence order of the velocity and magnetic field reach second-order accuracy, and the pressure is the first-order convergence accuracy. Finally, the numerical examples demonstrate the optimal error estimates of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.