Abstract

A Large Deviation Principle (LDP) is proved for the family $(1/n)\sum_1^n f(x_i^n) Z_i$ where $(1/n)\sum_1^n \delta_{x_i^n}$ converges weakly to a probability measure on $R$ and $(Z_i)_{i\in N}$ are $R^d$-valued independent and identically distributed random variables having some exponential moments, i.e., $$E e^{a |Z|} \lt \infty$$ for some $0 \lt a \lt \infty$. The main improvement of this work is the relaxation of the steepness assumption concerning the cumulant generating function of the variables $(Z_i)_{i \in N}$. In fact, Gärtner-Ellis' theorem is no longer available in this situation. As an application, we derive a LDP for the family of empirical measures $(1/n) \sum_1^n Z_i \delta_{x_i^n}$. These measures are of interest in estimation theory (see Gamboa et al., Csiszar et al.), gas theory (see Ellis et al., van den Berg et al.), etc. We also derive LDPs for empirical processes in the spirit of Mogul'skii's theorem. Various examples illustrate the scope of our results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.