Abstract

A crack in a viscoelastic functionally graded material (FGM) layer sandwiched between two dissimilar homogeneous viscoelastic layers is studied under antiplane shear conditions. The shear relaxation modulus of the FGM layer follows the power law of viscoelasticity, i.e., μ = μ0exp (βy/h) [t0exp (δy/h) /t]q, where h is a scale length, and μ0,t0,β,δ and q are material constants. Note that the FGM layer has position-dependent modulus and relaxation time. The shear relaxation functions of the two homogeneous viscoelastic layers are μ=μ1(t1/t)q for the bottom layer and μ=μ2(t2/t)q for the top layer, where μ1 and μ2 are material constants, and t1 and t2 are relaxation times. An elastic crack problem of the composite structure is first solved and the `correspondence principle' is used to obtain stress intensity factors (SIFs) for the viscoelastic system. Formulae for SIFs and crack displacement profiles are derived. Several examples are given which include interface cracking between a viscoelastic functionally graded interlayer and a viscoelastic homogeneous material coating. Moreover, a parametric study is conducted considering various material and geometric parameters and loading conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.