Abstract
In Antarctic continent, the organisms are exposed to high ultraviolet (UV) radiation because of damaged stratospheric ozone. UV causes DNA lesions due to the accumulation of photoproducts. Photolyase can repair UV-damaged DNA in a light-dependent process by electron transfer mechanism. Here, we isolated a CPD photolyase gene PnPHR1 from Antarctic moss Pohlia nutans, which encodes a protein of theoretical molecular weight of 69.1 KDa. The expression level of PnPHR1 was increased by UV-B irradiation. Enzyme activity assay in vitro showed that PnPHR1 exhibited photoreactivation activity, which can repair CPD photoproducts in a light-dependent manner. The complementation assay of repair-deficient E. coli strain SY2 demonstrated that PnPHR1 gene enhanced the survival rate of SY2 strain after UV-B radiation. Additionally, overexpression of PnPHR1 enhanced the Arabidopsis resistance to UV-B radiation and salinity stress, which also conferred plant tolerance to oxidative stress by decreasing ROS production and increasing ROS clearance. Our work shows that PnPHR1 encodes an active CPD photolyase, which may participate in the adaptation of P. nutans to polar environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.