Abstract
Mechanical loading enhances bone strength and counteracts arthritis-induced inflammation-mediated bone loss in female mice. It is unknown whether nonsteroidal anti-inflammatory drugs (NSAIDs; eg, COX-2 inhibitors) can reduce inflammation without affecting the loading-associated bone formation in male mice. The aim of this study was to investigate if loading combined with a COX-2 inhibitor (NS-398) could prevent arthritis-induced bone loss and inflammation in male mice. Four-month-old male C57BL/6J mice were subjected to axial tibial mechanical loading three times/week for 2 weeks. Local mono-arthritis was induced with a systemic injection of methylated bovine serum albumin on the first day of loading, followed by a local injection in one knee 1 week later. The arthritis induction, knee swelling, bone architecture, and osteoclast number were evaluated in the hind limbs. C-terminal cross-links as a marker for osteoclast activity was measured in serum. Compared with loading and arthritis alone, loading of the arthritic joint enhanced swelling that was partly counteracted by NS-398. Loading of the arthritic joint enhanced synovitis and articular cartilage damage compared with loading alone. Loading increased cortical bone and counteracted the arthritis-induced decrease in epiphyseal bone. NS-398 did not alter the bone-protective effects of loading. C-terminal cross-links, a bone resorption marker, was increased by arthritis but not loading. In conclusion, loading prevented arthritis-induced epiphyseal and metaphyseal bone loss, and NS-398 reduced knee swelling without affecting the bone-protective effects of loading. If our results can be extrapolated to the human situation, specific COX-2 inhibitors could be used in combination with loading exercise to prevent pain and swelling of the joint without influencing the bone-protective effects of loading. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.